Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 619(7971): 782-787, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438520

RESUMEN

Many communities in low- and middle-income countries globally lack sustainable, cost-effective and mutually beneficial solutions for infectious disease, food, water and poverty challenges, despite their inherent interdependence1-7. Here we provide support for the hypothesis that agricultural development and fertilizer use in West Africa increase the burden of the parasitic disease schistosomiasis by fuelling the growth of submerged aquatic vegetation that chokes out water access points and serves as habitat for freshwater snails that transmit Schistosoma parasites to more than 200 million people globally8-10. In a cluster randomized controlled trial (ClinicalTrials.gov: NCT03187366) in which we removed invasive submerged vegetation from water points at 8 of 16 villages (that is, clusters), control sites had 1.46 times higher intestinal Schistosoma infection rates in schoolchildren and lower open water access than removal sites. Vegetation removal did not have any detectable long-term adverse effects on local water quality or freshwater biodiversity. In feeding trials, the removed vegetation was as effective as traditional livestock feed but 41 to 179 times cheaper and converting the vegetation to compost provided private crop production and total (public health plus crop production benefits) benefit-to-cost ratios as high as 4.0 and 8.8, respectively. Thus, the approach yielded an economic incentive-with important public health co-benefits-to maintain cleared waterways and return nutrients captured in aquatic plants back to agriculture with promise of breaking poverty-disease traps. To facilitate targeting and scaling of the intervention, we lay the foundation for using remote sensing technology to detect snail habitats. By offering a rare, profitable, win-win approach to addressing food and water access, poverty alleviation, infectious disease control and environmental sustainability, we hope to inspire the interdisciplinary search for planetary health solutions11 to the many and formidable, co-dependent global grand challenges of the twenty-first century.


Asunto(s)
Agricultura , Ecosistema , Salud Rural , Esquistosomiasis , Caracoles , Animales , Niño , Humanos , Esquistosomiasis/epidemiología , Esquistosomiasis/prevención & control , Esquistosomiasis/transmisión , Caracoles/parasitología , África Occidental , Fertilizantes , Especies Introducidas , Intestinos/parasitología , Agua Dulce , Plantas/metabolismo , Biodiversidad , Alimentación Animal , Calidad del Agua , Producción de Cultivos/métodos , Salud Pública , Pobreza/prevención & control , Organismos Acuáticos/metabolismo , Tecnología de Sensores Remotos
2.
Lancet Planet Health ; 6(11): e870-e879, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36370725

RESUMEN

BACKGROUND: Billions of people living in poverty are at risk of environmentally mediated infectious diseases-that is, pathogens with environmental reservoirs that affect disease persistence and control and where environmental control of pathogens can reduce human risk. The complex ecology of these diseases creates a global health problem not easily solved with medical treatment alone. METHODS: We quantified the current global disease burden caused by environmentally mediated infectious diseases and used a structural equation model to explore environmental and socioeconomic factors associated with the human burden of environmentally mediated pathogens across all countries. FINDINGS: We found that around 80% (455 of 560) of WHO-tracked pathogen species known to infect humans are environmentally mediated, causing about 40% (129 488 of 359 341 disability-adjusted life years) of contemporary infectious disease burden (global loss of 130 million years of healthy life annually). The majority of this environmentally mediated disease burden occurs in tropical countries, and the poorest countries carry the highest burdens across all latitudes. We found weak associations between disease burden and biodiversity or agricultural land use at the global scale. In contrast, the proportion of people with rural poor livelihoods in a country was a strong proximate indicator of environmentally mediated infectious disease burden. Political stability and wealth were associated with improved sanitation, better health care, and lower proportions of rural poverty, indirectly resulting in lower burdens of environmentally mediated infections. Rarely, environmentally mediated pathogens can evolve into global pandemics (eg, HIV, COVID-19) affecting even the wealthiest communities. INTERPRETATION: The high and uneven burden of environmentally mediated infections highlights the need for innovative social and ecological interventions to complement biomedical advances in the pursuit of global health and sustainability goals. FUNDING: Bill & Melinda Gates Foundation, National Institutes of Health, National Science Foundation, Alfred P. Sloan Foundation, National Institute for Mathematical and Biological Synthesis, Stanford University, and the US Defense Advanced Research Projects Agency.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Carga Global de Enfermedades , Humanos , Enfermedades Transmisibles/epidemiología , Salud Global , Factores Socioeconómicos , Estados Unidos
3.
Lancet Planet Health ; 6(8): e694-e705, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35932789

RESUMEN

As sustainable development practitioners have worked to "ensure healthy lives and promote well-being for all" and "conserve life on land and below water", what progress has been made with win-win interventions that reduce human infectious disease burdens while advancing conservation goals? Using a systematic literature review, we identified 46 proposed solutions, which we then investigated individually using targeted literature reviews. The proposed solutions addressed diverse conservation threats and human infectious diseases, and thus, the proposed interventions varied in scale, costs, and impacts. Some potential solutions had medium-quality to high-quality evidence for previous success in achieving proposed impacts in one or both sectors. However, there were notable evidence gaps within and among solutions, highlighting opportunities for further research and adaptive implementation. Stakeholders seeking win-win interventions can explore this Review and an online database to find and tailor a relevant solution or brainstorm new solutions.


Asunto(s)
Control de Enfermedades Transmisibles , Desarrollo Sostenible , Humanos
4.
Front Public Health ; 10: 892366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875032

RESUMEN

Humans live in complex socio-ecological systems where we interact with parasites and pathogens that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate hosts, vectors, intermediate hosts). Through a synthesis of published literature, we reviewed the life cycles and environmental persistence of 150 parasites and pathogens tracked by the World Health Organization's Global Burden of Disease study. We used those data to derive the time spent in each component of a pathogen's life cycle, including total time spent in humans versus all environmental stages. We found that nearly all infectious organisms were "environmentally mediated" to some degree, meaning that they spend time in reservoirs and can be transmitted from those reservoirs to human hosts. Correspondingly, many infectious diseases were primarily controlled through environmental interventions (e.g., vector control, water sanitation), whereas few (14%) were primarily controlled by integrated methods (i.e., combining medical and environmental interventions). Data on critical life history attributes for most of the 150 parasites and pathogens were difficult to find and often uncertain, potentially hampering efforts to predict disease dynamics and model interactions between life cycle time scales and infection control strategies. We hope that this synthetic review and associated database serve as a resource for understanding both common patterns among parasites and pathogens and important variability and uncertainty regarding particular infectious diseases. These insights can be used to improve systems-based approaches for controlling environmentally mediated diseases of humans in an era where the environment is rapidly changing.


Asunto(s)
Enfermedades Transmisibles , Enfermedades Parasitarias , Enfermedades Transmisibles/epidemiología , Ecosistema , Salud Global , Humanos , Enfermedades Parasitarias/epidemiología , Agua
5.
PLoS Negl Trop Dis ; 15(10): e0009806, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610025

RESUMEN

BACKGROUND: Infectious disease risk is driven by three interrelated components: exposure, hazard, and vulnerability. For schistosomiasis, exposure occurs through contact with water, which is often tied to daily activities. Water contact, however, does not imply risk unless the environmental hazard of snails and parasites is also present in the water. By increasing reliance on hazardous activities and environments, socio-economic vulnerability can hinder reductions in exposure to a hazard. We aimed to quantify the contributions of exposure, hazard, and vulnerability to the presence and intensity of Schistosoma haematobium re-infection. METHODOLOGY/PRINCIPAL FINDINGS: In 13 villages along the Senegal River, we collected parasitological data from 821 school-aged children, survey data from 411 households where those children resided, and ecological data from all 24 village water access sites. We fit mixed-effects logistic and negative binomial regressions with indices of exposure, hazard, and vulnerability as explanatory variables of Schistosoma haematobium presence and intensity, respectively, controlling for demographic variables. Using multi-model inference to calculate the relative importance of each component of risk, we found that hazard (Æ©wi = 0.95) was the most important component of S. haematobium presence, followed by vulnerability (Æ©wi = 0.91). Exposure (Æ©wi = 1.00) was the most important component of S. haematobium intensity, followed by hazard (Æ©wi = 0.77). Model averaging quantified associations between each infection outcome and indices of exposure, hazard, and vulnerability, revealing a positive association between hazard and infection presence (OR = 1.49, 95% CI 1.12, 1.97), and a positive association between exposure and infection intensity (RR 2.59-3.86, depending on the category; all 95% CIs above 1). CONCLUSIONS/SIGNIFICANCE: Our findings underscore the linkages between social (exposure and vulnerability) and environmental (hazard) processes in the acquisition and accumulation of S. haematobium infection. This approach highlights the importance of implementing both social and environmental interventions to complement mass drug administration.


Asunto(s)
Reinfección/parasitología , Schistosoma haematobium/fisiología , Esquistosomiasis Urinaria/parasitología , Vulnerabilidad Social , Adolescente , Animales , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino , Reinfección/epidemiología , Reinfección/psicología , Población Rural/estadística & datos numéricos , Schistosoma haematobium/genética , Schistosoma haematobium/aislamiento & purificación , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/psicología , Senegal/epidemiología , Poblaciones Vulnerables/estadística & datos numéricos , Agua/parasitología
6.
PLoS Negl Trop Dis ; 15(9): e0009712, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34570777

RESUMEN

Schistosome parasites infect more than 200 million people annually, mostly in sub-Saharan Africa, where people may be co-infected with more than one species of the parasite. Infection risk for any single species is determined, in part, by the distribution of its obligate intermediate host snail. As the World Health Organization reprioritizes snail control to reduce the global burden of schistosomiasis, there is renewed importance in knowing when and where to target those efforts, which could vary by schistosome species. This study estimates factors associated with schistosomiasis risk in 16 villages located in the Senegal River Basin, a region hyperendemic for Schistosoma haematobium and S. mansoni. We first analyzed the spatial distributions of the two schistosomes' intermediate host snails (Bulinus spp. and Biomphalaria pfeifferi, respectively) at village water access sites. Then, we separately evaluated the relationships between human S. haematobium and S. mansoni infections and (i) the area of remotely-sensed snail habitat across spatial extents ranging from 1 to 120 m from shorelines, and (ii) water access site size and shape characteristics. We compared the influence of snail habitat across spatial extents because, while snail sampling is traditionally done near shorelines, we hypothesized that snails further from shore also contribute to infection risk. We found that, controlling for demographic variables, human risk for S. haematobium infection was positively correlated with snail habitat when snail habitat was measured over a much greater radius from shore (45 m to 120 m) than usual. S. haematobium risk was also associated with large, open water access sites. However, S. mansoni infection risk was associated with small, sheltered water access sites, and was not positively correlated with snail habitat at any spatial sampling radius. Our findings highlight the need to consider different ecological and environmental factors driving the transmission of each schistosome species in co-endemic landscapes.


Asunto(s)
Schistosoma haematobium/fisiología , Schistosoma mansoni/fisiología , Esquistosomiasis Urinaria/parasitología , Esquistosomiasis mansoni/parasitología , Adolescente , Adulto , Distribución Animal , Animales , Niño , Reservorios de Enfermedades/parasitología , Ecosistema , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ríos/parasitología , Población Rural/estadística & datos numéricos , Schistosoma haematobium/genética , Schistosoma haematobium/aislamiento & purificación , Schistosoma mansoni/genética , Schistosoma mansoni/aislamiento & purificación , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/transmisión , Esquistosomiasis mansoni/epidemiología , Esquistosomiasis mansoni/transmisión , Senegal/epidemiología , Caracoles/parasitología , Caracoles/fisiología , Adulto Joven
7.
Front Public Health ; 9: 642895, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336754

RESUMEN

In recent decades, computer vision has proven remarkably effective in addressing diverse issues in public health, from determining the diagnosis, prognosis, and treatment of diseases in humans to predicting infectious disease outbreaks. Here, we investigate whether convolutional neural networks (CNNs) can also demonstrate effectiveness in classifying the environmental stages of parasites of public health importance and their invertebrate hosts. We used schistosomiasis as a reference model. Schistosomiasis is a debilitating parasitic disease transmitted to humans via snail intermediate hosts. The parasite affects more than 200 million people in tropical and subtropical regions. We trained our CNN, a feed-forward neural network, on a limited dataset of 5,500 images of snails and 5,100 images of cercariae obtained from schistosomiasis transmission sites in the Senegal River Basin, a region in western Africa that is hyper-endemic for the disease. The image set included both images of two snail genera that are relevant to schistosomiasis transmission - that is, Bulinus spp. and Biomphalaria pfeifferi - as well as snail images that are non-component hosts for human schistosomiasis. Cercariae shed from Bi. pfeifferi and Bulinus spp. snails were classified into 11 categories, of which only two, S. haematobium and S. mansoni, are major etiological agents of human schistosomiasis. The algorithms, trained on 80% of the snail and parasite dataset, achieved 99% and 91% accuracy for snail and parasite classification, respectively, when used on the hold-out validation dataset - a performance comparable to that of experienced parasitologists. The promising results of this proof-of-concept study suggests that this CNN model, and potentially similar replicable models, have the potential to support the classification of snails and parasite of medical importance. In remote field settings where machine learning algorithms can be deployed on cost-effective and widely used mobile devices, such as smartphones, these models can be a valuable complement to laboratory identification by trained technicians. Future efforts must be dedicated to increasing dataset sizes for model training and validation, as well as testing these algorithms in diverse transmission settings and geographies.


Asunto(s)
Esquistosomiasis , África Occidental , Animales , Humanos , Redes Neurales de la Computación , Schistosoma , Esquistosomiasis/epidemiología , Senegal
8.
Geospat Health ; 15(2)2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33461284

RESUMEN

Schistosomiasis, or "snail fever", is a parasitic disease affecting over 200 million people worldwide. People become infected when exposed to water containing particular species of freshwater snails. Habitats for such snails can be mapped using lightweight, inexpensive and field-deployable consumer-grade Unmanned Aerial Vehicles (UAVs), also known as drones. Drones can obtain imagery in remote areas with poor satellite imagery. An unexpected outcome of using drones is public engagement. Whereas sampling snails exposes field technicians to infection risk and might disturb locals who are also using the water site, drones are novel and fun to watch, attracting crowds that can be educated about the infection risk.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Esquistosomiasis/epidemiología , Caracoles/parasitología , Animales , Ecosistema , Humanos , Tecnología de Sensores Remotos , Imágenes Satelitales
9.
Nat Sustain ; 2(7): 611-620, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33313425

RESUMEN

Recent evidence suggests that snail predators may aid efforts to control the human parasitic disease schistosomiasis by eating aquatic snail species that serve as intermediate hosts of the parasite. Potential synergies between schistosomiasis control and aquaculture of giant prawns are evaluated using an integrated bio-economic-epidemiologic model. Combinations of stocking density and aquaculture cycle length that maximize cumulative, discounted profit are identified for two prawn species in sub-Saharan Africa: the endemic, non-domesticated Macrobrachium vollenhovenii, and the non-native, domesticated Macrobrachium rosenbergii. At profit maximizing densities, both M. rosenbergii and M. vollenhovenii may substantially reduce intermediate host snail populations and aid schistosomiasis control efforts. Control strategies drawing on both prawn aquaculture to reduce intermediate host snail populations and mass drug administration to treat infected individuals are found to be superior to either strategy alone. Integrated aquaculture-based interventions can be a win-win strategy in terms of health and sustainable development in schistosomiasis endemic regions of the world.

10.
Proc Natl Acad Sci U S A ; 117(45): 28515-28524, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106399

RESUMEN

Tropical forest loss currently exceeds forest gain, leading to a net greenhouse gas emission that exacerbates global climate change. This has sparked scientific debate on how to achieve natural climate solutions. Central to this debate is whether sustainably managing forests and protected areas will deliver global climate mitigation benefits, while ensuring local peoples' health and well-being. Here, we evaluate the 10-y impact of a human-centered solution to achieve natural climate mitigation through reductions in illegal logging in rural Borneo: an intervention aimed at expanding health care access and use for communities living near a national park, with clinic discounts offsetting costs historically met through illegal logging. Conservation, education, and alternative livelihood programs were also offered. We hypothesized that this would lead to improved health and well-being, while also alleviating illegal logging activity within the protected forest. We estimated that 27.4 km2 of deforestation was averted in the national park over a decade (∼70% reduction in deforestation compared to a synthetic control, permuted P = 0.038). Concurrently, the intervention provided health care access to more than 28,400 unique patients, with clinic usage and patient visitation frequency highest in communities participating in the intervention. Finally, we observed a dose-response in forest change rate to intervention engagement (person-contacts with intervention activities) across communities bordering the park: The greatest logging reductions were adjacent to the most highly engaged villages. Results suggest that this community-derived solution simultaneously improved health care access for local and indigenous communities and sustainably conserved carbon stocks in a protected tropical forest.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Atención a la Salud , Bosques , Salud Rural , Adulto , Cambio Climático , Diagnóstico , Enfermedad , Femenino , Agricultura Forestal , Evaluación del Impacto en la Salud , Humanos , Masculino , Persona de Mediana Edad , Árboles , Clima Tropical
11.
Proc Natl Acad Sci U S A ; 116(46): 23182-23191, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659025

RESUMEN

Recently, the World Health Organization recognized that efforts to interrupt schistosomiasis transmission through mass drug administration have been ineffective in some regions; one of their new recommended strategies for global schistosomiasis control emphasizes targeting the freshwater snails that transmit schistosome parasites. We sought to identify robust indicators that would enable precision targeting of these snails. At the site of the world's largest recorded schistosomiasis epidemic-the Lower Senegal River Basin in Senegal-intensive sampling revealed positive relationships between intermediate host snails (abundance, density, and prevalence) and human urogenital schistosomiasis reinfection (prevalence and intensity in schoolchildren after drug administration). However, we also found that snail distributions were so patchy in space and time that obtaining useful data required effort that exceeds what is feasible in standard monitoring and control campaigns. Instead, we identified several environmental proxies that were more effective than snail variables for predicting human infection: the area covered by suitable snail habitat (i.e., floating, nonemergent vegetation), the percent cover by suitable snail habitat, and size of the water contact area. Unlike snail surveys, which require hundreds of person-hours per site to conduct, habitat coverage and site area can be quickly estimated with drone or satellite imagery. This, in turn, makes possible large-scale, high-resolution estimation of human urogenital schistosomiasis risk to support targeting of both mass drug administration and snail control efforts.


Asunto(s)
Bulinus , Vectores de Enfermedades , Ecosistema , Esquistosomiasis/transmisión , Animales , Humanos , Densidad de Población , Imágenes Satelitales , Esquistosomiasis/epidemiología , Senegal/epidemiología , Análisis Espacial
12.
Am J Trop Med Hyg ; 100(1): 117-126, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30479247

RESUMEN

More than 200 million people in sub-Saharan Africa are infected with schistosome parasites. Transmission of schistosomiasis occurs when people come into contact with larval schistosomes emitted from freshwater snails in the aquatic environment. Thus, controlling snails through augmenting or restoring their natural enemies, such as native predators and competitors, could offer sustainable control for this human disease. Fishes may reduce schistosomiasis transmission directly, by preying on snails or parasites, or indirectly, by competing with snails for food or by reducing availability of macrophyte habitat (i.e., aquatic plants) where snails feed and reproduce. To identify fishes that might serve as native biological control agents for schistosomiasis in the lower Senegal River basin-one of the highest transmission areas for human schistosomiasis globally-we surveyed the freshwater fish that inhabit shallow, nearshore habitats and conducted multivariate analyses with quantitative diet data for each of the fish species encountered. Ten of the 16 fish species we encountered exhibited diets that may result in direct (predation) and/or indirect (food competition and habitat removal) control of snails. Fish abundance was low, suggesting limited effects on schistosomiasis transmission by the contemporary fish community in the lower Senegal River basin in the wild. Here, we highlight some native species-such as tilapia, West African lungfish, and freshwater prawns-that could be aquacultured for local-scale biological control of schistosomiasis transmission.


Asunto(s)
Agentes de Control Biológico , Peces/fisiología , Ríos/parasitología , Esquistosomiasis/prevención & control , Animales , Acuicultura , Bulinus/parasitología , Decápodos/fisiología , Conducta Predatoria , Schistosoma haematobium , Esquistosomiasis/transmisión , Senegal , Tilapia/fisiología
13.
Trends Parasitol ; 34(1): 23-40, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126819

RESUMEN

Control strategies to reduce human schistosomiasis have evolved from 'snail picking' campaigns, a century ago, to modern wide-scale human treatment campaigns, or preventive chemotherapy. Unfortunately, despite the rise in preventive chemotherapy campaigns, just as many people suffer from schistosomiasis today as they did 50 years ago. Snail control can complement preventive chemotherapy by reducing the risk of transmission from snails to humans. Here, we present ideas for modernizing and scaling up snail control, including spatiotemporal targeting, environmental diagnostics, better molluscicides, new technologies (e.g., gene drive), and 'outside the box' strategies such as natural enemies, traps, and repellants. We conclude that, to achieve the World Health Assembly's stated goal to eliminate schistosomiasis, it is time to give snail control another look.


Asunto(s)
Erradicación de la Enfermedad/métodos , Esquistosomiasis/epidemiología , Esquistosomiasis/prevención & control , Animales , Humanos , Esquistosomiasis/transmisión , Caracoles/parasitología
14.
Philos Trans R Soc Lond B Biol Sci ; 372(1722)2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28438916

RESUMEN

Dams have long been associated with elevated burdens of human schistosomiasis, but how dams increase disease is not always clear, in part because dams have many ecological and socio-economic effects. A recent hypothesis argues that dams block reproduction of the migratory river prawns that eat the snail hosts of schistosomiasis. In the Senegal River Basin, there is evidence that prawn populations declined and schistosomiasis increased after completion of the Diama Dam. Restoring prawns to a water-access site upstream of the dam reduced snail density and reinfection rates in people. However, whether a similar cascade of effects (from dams to prawns to snails to human schistosomiasis) occurs elsewhere is unknown. Here, we examine large dams worldwide and identify where their catchments intersect with endemic schistosomiasis and the historical habitat ranges of large, migratory Macrobrachium spp. prawns. River prawn habitats are widespread, and we estimate that 277-385 million people live within schistosomiasis-endemic regions where river prawns are or were present (out of the 800 million people who are at risk of schistosomiasis). Using a published repository of schistosomiasis studies in sub-Saharan Africa, we compared infection before and after the construction of 14 large dams for people living in: (i) upstream catchments within historical habitats of native prawns, (ii) comparable undammed watersheds, and (iii) dammed catchments beyond the historical reach of migratory prawns. Damming was followed by greater increases in schistosomiasis within prawn habitats than outside prawn habitats. We estimate that one third to one half of the global population-at-risk of schistosomiasis could benefit from restoration of native prawns. Because dams block prawn migrations, our results suggest that prawn extirpation contributes to the sharp increase of schistosomiasis after damming, and points to prawn restoration as an ecological solution for reducing human disease.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'.


Asunto(s)
Migración Animal , Cadena Alimentaria , Palaemonidae/fisiología , Esquistosomiasis/epidemiología , Caracoles/parasitología , África del Sur del Sahara/epidemiología , Animales , Humanos , Esquistosomiasis/parasitología , Esquistosomiasis/transmisión
15.
PLoS Negl Trop Dis ; 10(7): e0004794, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27441556

RESUMEN

BACKGROUND: Despite control efforts, human schistosomiasis remains prevalent throughout Africa, Asia, and South America. The global schistosomiasis burden has changed little since the new anthelmintic drug, praziquantel, promised widespread control. METHODOLOGY: We evaluated large-scale schistosomiasis control attempts over the past century and across the globe by identifying factors that predict control program success: snail control (e.g., molluscicides or biological control), mass drug administrations (MDA) with praziquantel, or a combined strategy using both. For data, we compiled historical information on control tactics and their quantitative outcomes for all 83 countries and territories in which: (i) schistosomiasis was allegedly endemic during the 20th century, and (ii) schistosomiasis remains endemic, or (iii) schistosomiasis has been "eliminated," or is "no longer endemic," or transmission has been interrupted. PRINCIPAL FINDINGS: Widespread snail control reduced prevalence by 92 ± 5% (N = 19) vs. 37 ± 7% (N = 29) for programs using little or no snail control. In addition, ecological, economic, and political factors contributed to schistosomiasis elimination. For instance, snail control was most common and widespread in wealthier countries and when control began earlier in the 20th century. CONCLUSIONS/SIGNIFICANCE: Snail control has been the most effective way to reduce schistosomiasis prevalence. Despite evidence that snail control leads to long-term disease reduction and elimination, most current schistosomiasis control efforts emphasize MDA using praziquantel over snail control. Combining drug-based control programs with affordable snail control seems the best strategy for eliminating schistosomiasis.


Asunto(s)
Reservorios de Enfermedades/parasitología , Control de Infecciones/métodos , Moluscocidas/farmacología , Esquistosomiasis/prevención & control , Caracoles/efectos de los fármacos , África/epidemiología , Animales , Asia/epidemiología , Salud Global , Humanos , Schistosoma/fisiología , Esquistosomiasis/epidemiología , Esquistosomiasis/parasitología , Esquistosomiasis/transmisión , Caracoles/crecimiento & desarrollo , Caracoles/parasitología , América del Sur/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...